
Building a new model for Account Management

Simon Wilkinson <simon@sxw.org.uk>
School of Informatics, University of Edinburgh

The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336.

mailto:simon@sxw.org.uk
mailto:simon@sxw.org.uk


Introduction

• Background & Requirements
• Decentralisation
• Account types
• Access and Identity Models
• Auditing

• Our Implementation
• Data Model
• Architecture
• Techonologies

• Conclusions



Watchu talkin’ ‘bout, Willis?

• What do we mean by Account/Identity* Management?

*Insert buzzword of choice

HR DB

Account 
Management 

System

Authentication
Service

Mail
Service

Authorisation
Service

• Layer between corporate database, 
and your services

• Ensures that changes propogate 
down (Identity Lifecycle)

• Ensures that data in all locations 
matches the corporate copy



Distribution and decentralisation	

• Historically, an organisation would have either
• A central account database used by every service
• Every service using its own database
• (or, a mixture of the above)

• Both are untenable in a distributed, decentralised world



Account Database per Service

• No idea who your ‘users’ are

• Deletion/disabling is impossible

• Management is fragmented

• Delegated services are difficult



Centralised database for all services

• Delegated services are impossible

• Every service must interoperate with the central 
database

• Central database must know about every service.

• Scalability is poor, especially for systems without a 
strong centre



Decentralisation

• Imagine a site with hundreds of services

• Bringing up a service at the periphery shouldn’t require 
action at the centre

• Users have to be able to deploy their own services, which 
use the central account management system

• Users must be able to manage their own access control, 
both for these and for centrally managed services



Account spectra

• Traditionally have ‘accounts’ for institutional users

• Gulf separates those from ‘visitors’, and again from web 
application accounts.

Staff Visitor Web

• These boundaries are increasing archaic

• Accounts must be able to slide in position on the 
spectrum



Role Based Access Control

• Traditionally user access has been controlled via user lists 
or groups.

• Role based access control adds additional flexibility

• A user has one or more roles, which describes functions 
they perform
• Staff
• Student
• Head of Department
• System administrator



Entitlements

• Each role confers upon the user a set of entitlements

• Entitlements determine what they can do on the system
• Log in to webmail
• Log in to the compute cluster
• Access the finance system
• Edit the DNS

• For flexibility, we also allow roles to include other roles
• For example, every student is a person



Identity Modelling	

• Traditionally, all of a users entitlements are associated 
with a single identity

• The user authenticates to that identity, and then gets all of 
the access granted to that identity

• Doesn’t solve
• “I want a password that can just access my webmail”
• “I want a key that will let a process just write to this directory”
• “I shouldn’t have admin permissions unless necessary”
• “I should need a smartcard to login as an administrator”



Facets of Identity

• Split identity into multiple facets (or instances)

• Each instance has a subset of the base identity’s 
entitlements

• Some instances may have additional entitlements

• Let users create instances as required, and distribute 
entitlements between them



Assurance

• Different levels of access require different levels of identity 
verification
• Passwords
• One-time passwords
• Hardware tokens

• Important to be able to keep this different levels separate 
on the system (can’t all share a Unix UID, if they’re shell 
sessions)



Accounts

• Ultimately, an account is a property of a particular system

• Different systems may have different account attributes 
(uids, gids, shells, etc)

• Not all identities will have accounts, but some will have 
multiple accounts



Entities

• Machines access services too, and their accounts must 
be managed.

• Not an Account Management System

• Not an Identity Management System

• An Entity Management System?



Distribution

• A central system doesn’t scale, either physically, or in 
terms of administrator effort

• Each service must be responsible for managing its local 
database based on the contents of the central system

• Active, regular syncronisation is vital

• Must be local to the service, rather than pushed from the 
centre



Auditing

• Important to regularly report on the integrity of the system

• Audit runs identify anomalies and inconsistencies 
between databases

• Audit reports can highlight software bugs, and operator 
errors

• Provided as a tool for service administrators



Delegation

• Users should be able to manage their own identity

• Users should be able to own groups and entitlements

• Users should be able to bring up services which use the 
central system

• A service administrator is just another user



Introducing Prometheus

• The School of Informatics’s new account management 
system

• Currently named Prometheus

• Designed to address all of the previously discussed 
issues

• Very much a work in progress!



The Entity Data Model

Entity

Identity BIdentity A Identity C

Account A Account B

Person Machine



What goes where ...

Entity

Identity B

Account A Account B

Person Machine

• Entities contain real-world 
information, plus overall role data

• Identities contain instance specific 
data, and authentication details

• Accounts contain OS specific data 
(uid, gid and the like)



Role and Entitlement data model

• A role contains
• other roles
• entitlements
• negated entitlements

• An entity has both roles and explicit entitlements

• An identity may have any roles and entitlements owned 
by its parent entity (and must have any negated entries)

• An identity may have additional roles and entitlements



Role and Entitlement Ownership

• In order to achieve delegation we have to have an 
ownership model for roles and entitlements

• An owner may grant that object to another role or user

• An owner may resign (remove) any object that they’ve 
been granted, but cannot then restore it.

• Owners may restrict who can use an entitlement

• Owners may delegate these powers to other users



Architecture - abstract

Database

Source Databases

Service Databases

Conduits

Conduits

Command Line Interface

Web Interface

Scripts

A
P
I



Data flow

Database

Source Databases

Conduit

Conduit

Service Database

• Source database may be flat file, 
RDBMs, LDAP, whatever you like

• Import conduit translates from 
source database to abstract 
attribute store

• Output conduit translates from 
attribute store to service-specific 
database

• This can be circular!



Conduit operation

• Conduits can operate over entire data set, or be triggered 
by entitlements (ie kdcentry gives an instance a principal)

• Conduits can be pushed data or they may pull it. (support 
for notified pulls is planned)

• Conduits can work with deltas, or the whole database

• Audit runs are supported, and a reporting interface is 
provided

• Conduits may add arbitrary schema to the attribute store



Architecture - detail

Database

HR LCFGFriends

KDC LDAP AFS Jabber

dbsync iFriendSync lcfgsync

afssyncldapsynckdcsync jabbersync

Account Management 
Tools

Role Editor

Identity Editor

A
P
I



Implementation

• Central database, and communication protocol LDAP 
based. Server implemented on top of OpenLDAP

• Advantages
• Common, secure, well specified protocol
• Hierarchical directory layout suits our data model
• Straightforward, well documented, common place client API

• Disadvantages
• Hard to express role and entitlement ownership model
• Server data model requires external scripts, or plugins



Implementation

• Plan to provide an OpenMetaDir message bus interface 
to our LDAP repository

• OpenMetaDir is a framework designed for producing 
account management systems

• Powerful message passing, routing, and schema/
ontology definitions

• Likely to be significantly faster than the LDAP system, but 
require more coding effort in the conduit



Implementation - Conduits

• Conduit simplicity is the primary goal

• Conduits which just want to pull information just need to
• Register their identity, and triggering entitlement with the server
• Perform ldapsearches with that identity

• Conduits with more complex requirements can use 
syncrepl (for updates) and OpenMetaDir (if their needs are 
specialised)

ldapsearch -h prometheus.inf.ed.ac.uk \
-b “o=Prometheus,dc=inf,dc=ed,dc=ac,dc=uk” \ 
(objectClass=prometheusIdentity)



Implementation - Conduit Simplicity

• Simple conduits require the server have the ability to 
collapse the entity data model ...

Entity

Identity B

Account A Account B

Person

Entity

Identity B

Account A

Entity

Identity B

Account B

and



The Web Interface



Web Interface Implementation	

• Written using Catalyst - a perl MVC framework

• Uses prometheus API to communicate with 
LDAP server

• Uses user’s authentication tokens to secure 
server connection

• All authorization and access control checks 
performed in the server



Conclusions

• System design that meets all of our requirements

• Implementation continuing as an evolution of our existing 
system

• Code drops will be available shortly

• Very interested in talking to other sites that might be 
interested in any of this!



Questions?

This talk: http://www.dice.inf.ed.ac.uk/publications/

Prometheus: http://www.dice.inf.ed.ac.uk/prometheus/

Me: simon@sxw.org.uk

http://www.dice.inf.ed.ac.uk/publications/
http://www.dice.inf.ed.ac.uk/publications/
http://www.dice.inf.ed.ac.uk/prometheus/
http://www.dice.inf.ed.ac.uk/prometheus/
mailto:simon@sxw.org.uk
mailto:simon@sxw.org.uk

